A REASSESSMENT OF THE DATA SUPPORTING THE STRUCTURES OF BLUMEA MALCOLMII FLAVONOLS

KENNETH R. MARKHAM

Chemistry Division, DSIR, Private Bag, Petone, New Zealand

(Received 21 June 1988)

Key Word Index-Blumea malcolmii; Compositae, flavonols; revised structures; quercetagetin methyl ethers.

Abstract—The data previously presented in support of the structures of four new flavonols from *Blumea malcolmii*, are shown to have been misinterpreted. A reassessment indicates that the four flavonols earlier defined as 6-hydroxy-3,5,7,4'-tetramethoxyflavone, 6,2',5'-trihydroxy-3,5,7-trimethoxyflavone, and its 2'- and 2',5'-methyl ethers, are most probably 5-hydroxy-3,6,7,4'-tetramethoxyflavone and the 3,6,7-, 3,6,7,3'- and 3,6,7,3',4'-methyl ethers of quercetagetin respectively.

INTRODUCTION

In a recent paper [1], the isolation and structure elucidation of four flavonols, 6-hydroxy-3,5,7,4'-tetramethoxyflavone (1), 6,2',5'-trihydroxy-3,5,7-trimethoxyflavone (2), 6,5'-dihydroxy-3,5,7,2'-tetramethoxyflavone (3) and 6-hydroxy-3,5,7,2',5'-pentamethoxyflavone (4), from Blumea malcolmii were described. All four are new and highly unusual biosynthetically, 1-4 because of their substituted 5-hydroxyl functions and 2-4 because of the 2',5'-dioxygenation patterns which have been encountered only rarely before in flavones/flavonols [2]. For these reasons the flavonols are of particular interest, and the present communication describes a critical re-examination of the data cited in support of the proposed structures.

DISCUSSION

The structure of the single pentaoxygenated flavonol (1) is supported by chromatographic spot colour, absorption spectra, an ¹H NMR spectrum and a mass spectrum. Permethylation gave the same pentamethyl ether as is produced from penduletin, so confirming the 3,5,6,7,4'oxygenation pattern. This permethyl ether appeared blue fluorescent in UV light as expected for a flavonol-3,5dimethyl ether [3]. In contrast, the parent flavonol (1) produces a dark (brown) UV-absorbing spot which is indicative of a flavonoid with a free 5-hydroxyl [3]. The presence of a free 5-hydroxyl is also evident from the absorption spectrum in AlCl₃/HCl which exhibits a band I shift of ca 15 nm relative to the spectrum in methanol alone [4]. The size of this shift is consistent with the additional presence of a 6-methoxyl group [4] and would not occur at all if the 5-hydroxyl group was methylated. The proposed structure 1 is therefore incorrect and indeed the literature m.p. cited by the authors for this compound at 199-200° [5] does not compare well with that reported for 1 (178-180°) [1]. The only structure consistent with all of the presented data is 5-hydroxy-3,6,7,4'-tetramethoxyflavone (1a), a known compound with a reported mp of 173-174° [6].

The three hexaoxygenated flavonols, 2-4, are all related by methylation, 2 producing 4, and 3 and 4 produc-

$$MeO$$
 OMe
 OMe
 OR^1
 OMe

1
$$R^1 = Me$$
; $R^2 = H$
1a $R^1 = H$; $R^2 = Me$

2
$$R^1 = R^2 = H$$

3 $R^1 = Me$; $R^2 = H$
4 $R^1 = R^2 = Me$

2a
$$R^1 = R^2 = H$$

3a $R^1 = Me$; $R^2 = H$
4a $R^1 = R^2 = Me$

244 K. R. Markham

ing the same permethyl ether, mp 138–139°. This permethyl ether is described as appearing blue fluorescent on a chromatogram, as expected for a flavonol-3,5-dimethyl ether [3]. Again, as with 1 above, compounds 2–4 which are proposed to be flavonol-3,5-dimethyl ethers, appear dark (brown) and not blue fluorescent, and exhibit AlCl₃/HCl induced shifts in their absorption spectra. All three therefore possess underivatized 5-hydroxyl groups and methylated 3-hydroxyl groups, and thus must possess structures different from those proposed.

The absorption spectra of all three compounds resemble those of quercetagetin (3,5,6,7,3',4'-hexahydroxyflavone) methyl ethers and their derivatives. For example, the absorption spectra of 2-4 approximate to those of 5,3',4'trihydroxy-3,6,7-trimethoxyflavone, 2a [7], jacein (5,7,4'trihydroxy-3,6,3'-trimethoxyflavone 7-O-glucoside) [8] and artemetin (5-hydroxy-3,6,7,3',4'-pentamethoxyflavone, 4a) [8] respectively. There are also strong similarities between the ¹HNMR spectra of compounds 2-4 and quercetagetin derivatives. Apart from the H-8 singlet at ca 6.5 ppm, quercetagetin derivatives show two protons (H-2' and 6') resonating at low field and one (H-3') at higher field [7, 8], as is seen in the spectra of compounds 2-4. However, in the spectra of 2',5'-dioxygenated flavones the reverse is observed, with only one proton (H-6') resonating at low field and two (H-3' and 4') at higher field (e.g. see [9]). In particular, the spectra presented for compound 4 and for the permethyl ether derived from 2-4 are indistinguishable from those in the literature for artemetin (4a) and quercetagetin hexamethyl ether respectively [8]. Certain features of the mass spectra too are inconsistent with the proposed structures 2-4. For example the presence of 2'-hydroxyl and 2'-methoxyl groups should be evidenced by the production of major ions representing [M-17] or [M-31] [10], but these are not seen in the spectra of 2-4.

From the above, it is evident that the physical evidence strongly favours quercetagetin-related structures for compounds 2–4. These structures find further support in that the permethyl ether of 2–4 has a mp of 138 139° compared with a reported mp of 142–143° for quercetagetin hexamethyl ether [11], and that their ¹H NMR spectra are identical. The equivalent gossypetin structures are seemingly excluded since the mp of gossypetin hexamethyl ether is markedly different at 171–172.5° [12].

Proposed structures which account for all published data on compounds 2-4 are as follows. Compound 2 is assigned the structure, 5,3',4'-trihydroxy-3,6,7-trimethoxyflavone (2a) since it must possess a 5-hydroxyl and an ortho-dihydroxyl system based on the observed AlCl₃ and AlCl₃/HCl induced shifts in the absorption spectrum. Further, reported mps of 237-238° [13] and 249-250° ([14], product of Wessely-Moser rearrangement) for 2a are in general accord with the value of 252° recorded for compound 2. Compound 3 with only two free hydroxyls, one of which is at C-5, is assigned the structure 5,4'-dihydroxy-3,6,7,3'-tetrahydroxyflavone (3a), the 4'-hydroxyl being evidenced [4] by the 45 nm bathochromic shift in band I of the absorption spectrum

with NaOMe (accompanied by no significant decrease in intensity). Authentic 3a is reported to have a mp of 181–182° [11] which is close to the 189–191° quoted for compound 3. The 8-methoxy equivalent is clearly excluded as a possible alternative as it possesses a much higher mp (210–212.5° [12]). Finally, compound 4 is almost certainly 5-hydroxy-3,6,7,3',4'-pentamethoxy-flavone (artemetin, 4a), since it possesses an identical ¹H NMR spectrum and its single hydroxyl group must be at C-5 to account for the chromatographic appearance. Artemetin has reported mps of 163–164° and 173–175° [12] both values being close to the 166–168° recorded for 4

In conclusion, it is considered on the basis of the reported physical data, that the structures of all four 3-methoxyflavones from *Blumea malcolmii* have been incorrectly assigned, and are best represented instead by structures 1a, 2a, 3a and 4a. These new structures represent commonly co-occurring 4'- and 3',4'-oxygenated analogues with the same A-ring oxygenation. In this respect they provide a more rational biosynthetic relationship between the penta- and hexa-oxygenated flavones of *B. malcolmii* than did those originally proposed.

REFERENCES

- 1. Kulkarni, M. M., Rojatkar, S. R. and Nagasampagi, B. A. (1987) *Phytochemistry* **26**, 2079.
- Wollenweber, E. (1982) in The Flavonoids-Advances in Research (Harborne, J. B. and Mabry, T. J., eds), p. 189. Chapman & Hall, London.
- 3. Markham, K. R. (1982) Techniques of Flavonoid Identification, p. 19. Academic Press, London.
- Markham, K. R. (1982) Techniques of Flavonoid Identification. pp. 42-45. Academic Press, London.
- Row, L. R. and Seshadri, T. R. (1946) Proc. Indian Acad. Sci. 23A, 23.
- Dawson, R. M., Jarvis, M. W., Jefferies, P. R., Payne, T. G. and Rosich, R. S. (1966) Aust. J. Chem. 19, 2133.
- Rodriguez, E., Carman, N. J., Vander Velde, G., McReynolds, J. H., Mabry, T. J., Irwin, M. A. and Geissman, T. A. (1972) Phytochemistry 11, 3509.
- 8. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) in The Systematic Identification of Flavonoids. Springer, New York.
- Iinuma, M., Tanaka, T., Mizuno, M. and Min, Z-D (1985) Chem. Pharm. Bull. 33, 3982.
- Tanaka, T., Iinuma, M. and Mizuno, M. (1986) Chem. Pharm. Bull. 34, 1667.
- Hoerhammer, L., Wagner, H., Graf, E. and Farkas, L. (1965) Chem. Ber. 98, 548.
- Gripenberg, J. (1962) in *The Chemistry of Flavonoid Com*pounds (Geissman, T. A., ed), p. 406. Pergamon Press, New York.
- 13. Fukui, K., Nakayama, M. and Horie, T. (1968) Experientia 24, 769
- Henrick, C. A. and Jefferies, P. R. (1965) Tetrahedron 21, 3219.